A recursive, numerically stable, and efficient simulation algorithm for serial robots with flexible links
نویسندگان
چکیده
A methodology for the formulation of dynamic equations of motion of a serial flexible-link manipulator using the decoupled natural orthogonal complement (DeNOC) matrices, introduced elsewhere for rigid bodies, is presented in this paper. First, the Euler Lagrange (EL) equations of motion of the system are written. Then using the equivalence of EL and Newton–Euler (NE) equations, and the DeNOC matrices associated with the velocity constraints of the connecting bodies, the analytical and recursive expressions for the matrices and vectors appearing in the independent dynamic equations of motion are obtained. The analytical expressions allow one to obtain a recursive forward dynamics algorithm not only for rigid body manipulators, as reported earlier, but also for the flexible body manipulators. The proposed simulation algorithm for the flexible link robots is shown to be computationally more efficient and numerically more stable than other algorithms present in the literature. Simulations, using the proposed algorithm, for a two link arm with each link flexible and a Space Shuttle Remote Manipulator System (SSRMS) are presented. Numerical stability aspects of the algorithms are investigated using various criteria, namely, the zero eigenvalue phenomenon, energy drift method, etc. Numerical example of a SSRMS is taken up to show the efficiency and stability of the proposed algorithm. Physical interpretations of many terms associated with dynamic equations of flexible links, namely, the mass matrix of a composite flexible body, inertia wrench of a flexible link, etc. are also presented.
منابع مشابه
Dynamics of Space Free-Flying Robots with Flexible Appendages
A Space Free-Flying Robot (SFFR) includes an actuated base equipped with one or more manipulators to perform on-orbit missions. Distinct from fixed-based manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction forces due to manipulator motions. In order to control such a system, it is essential to consider the dynamic coupling between the manipulators and the base. Explicit d...
متن کاملAn Innovative Method to Modeling Realistic Flexible Robots
In this paper a modular, computationally efficient and numerically stable method is presented, which allows to obtain the dynamic model of a robot constituted by flexible links having varying cross-section and subjected to generic ending forces and torques and to the gravity actions. This method is based on the use of admissible deformation functions of wavelet type, obtained by using the Insta...
متن کاملNonlinear H Control for Uncertain Flexible Joint Robots with Unscented Kalman Filter
Todays, use of combination of two or more methods was considered to control of systems. In this paper ispresented how to design of a nonlinear H∞ (NL-H∞) controller for flexible joint robot (FJR) based on boundedUKF state estimator. The UKF has more advantages to standard EKF such as low bios and no need toderivations. In this research, based on spong primary model for FJRs, same as rigid robot...
متن کاملOptimal Load of Flexible Joint Mobile Robots Stability Approach
Optimal load of mobile robots, while carrying a load with predefined motion precision is an important consideration regarding their applications. In this paper a general formulation for finding maximum load carrying capacity of flexible joint mobile manipulators is presented. Meanwhile, overturning stability of the system and precision of the motion on the given end-effector trajectory are take...
متن کاملDynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach
This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...
متن کامل